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SUMMARY

The effect of cooling on boundary-layer transition in the steady

flow of air in the entrance of a smooth round tube has been investigated

experimentally. Runs were made at diameter Reynolds numbers varying from

50,000 to 106,000. The levels of disturbance were such as to yield adi-

abatic length Reynolds numbers (based on the length to the start of tran-

sition) ranging from 500jO00 to 1,800,000. Transition was determined

from logarithmic plots of local apparent friction factor against length

Reynolds number. Temperature differences between the wall and the free

stream up to 270o F were applied, but no significant effect of cooling

on the point of transition was found.

For a gas the theory of stability based on vanishingly small dis-

turbances predicts a large increase in the minimum value of Reynolds

number at which the laminar velocity profile first becomes unstable on

a flat plate when the plate is cooled. In addition, the theory predicts

that the initial rate of amplification of the disturbance is reduced by

cooling. Because of pressure gradients, the flow in the entrance of a

tube is not exactly the same as that on a flat plate, but the behavior

of the flow is thought to be very similar to that on a flat plate when

the boundary-layer thickness is small compared with the tube radius, as

it was throughout these tests. It appears, therefore, that, in the tests

reported here, transition may not have been brought about by amplification

of the so-called Tollmien-Schlichting waves of the current laminar insta-

bility theory. This suggests that study of the nonlinear terms of the

differential equations of motion will be necessary before the mechanism

of transition can be fully understood.

The present results indicate that the effect of cooling on transi-

tion is not likely to be significant in any normal internal flow. The

measured effect on transition, even when only very slight disturbances

are present, is always at least one order of magnitude less than the

effect theoretically predicted for the point at which the laminar veloc-

ity profile first becomes unstable.
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All the laminar adiabatic data of these tests are correlated within

+6 percent by the equation

4fAp P ReD = 6.87/x_ D

/_Re D

in the range for which (x/D)/Re D : Rex/ReD 2__! 0.005, where fAPP denotes

the apparent friction factor; Rex, the length Reynolds number; ReD, the

diametei' Rc&1_olds number; x, the axial distance from the tube entrance;

and D, the di_neter of the tube. A simple theory based on the momentum

integral method and the assumptions of very thin boundary layers having

flat-plate-like behavior yields the comparable formula

4fAp P ReD = 7.15/_

/TeD

INTRODUCTION

The theoretical studies of Tollmien (refs. i and 2), Schlichting

(ref. 3), Prandtl (ref. 4), and others have shown that beyond a certain

critical Reynolds number the laminar boundary layer becomes unstable to

small disturbances in a certain critical frequency range. This remark-

able mathematical theory has been verified beyond question by the experi-

mental work of Schubauer and Skramstad (ref. 5) and of Liepmann (refs. 6

and 7)- More recently Lin (ref. 8) and Lees and Lin (ref. 9) have

improved the mathematical theory and have extended it to cover the case

of the compressible fluid. Lees (ref. i0) and Van Driest (ref. ii) have

carried out numerical calculations showing the effect of heating or

cooling on the critical Reynolds number at which the boundary layer becomes

unstable to small disturbances for the flow of a gas past a flat plate.

Both Lees and Van Driest predict the critical Reynolds number in gases

to be greatly increased by cooling and greatly decreased by heating.

But Van Driest's calculations show much less effect, particularly of

cooling, than do those of Lees. The method employed by all these theo-

retical investigators is to introduce a small perturbation into the

differential equations of motion, discard terms involving disturbances

to the square, and then determine whether the disturbance increases or

dies out with increasing time. The current theory is thus concerned with

the point at which the laminar flow becomes unstable to vanishingly small

disturbances, but it is unable to predict either the location of the

transition point or how a laminar boundary layer behaves in the presence

of large disturbances.
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In any discussion of transition the distinction between the tran-
sition point and the point at which the laminar flow becomesunstable to
small disturbances must be kept clearly in mind. At the point where the
laminar flow becomesunstable the disturb_ices present maybe very small.
In this case turbulence will not appear immediately but will start con-
siderably further downstreamafter the disturbances have had time to
amplify. In this discussion the point at which turbulence first begins
to appear and the velocity profile begins to change from laminar to tur-
bulent will be referred to as the transition point. The point at which
the laminar profile first becomesunstable will be called the instability
point. It should be noted that, if transition occurs by amplification
of unstable waves, the transition point must lie at or downstreamof the
instability point.

In most technical applications the transition point is of interest
rather than the instability point. The theory cited above gives no direct
infon:_ation about the transition point. It does predict, however, that
the initial amplification of unstable waves is inversely proportional
to the one-fourth power of the Reynolds number at the instability point.
Thus, if the Reynolds numberat the instability point is increased by
cooling, one might surmise from the theory that the transition Reynolds
nm_er would be increased by an even greater amount. Such a delay of
the transition Reynolds numberwould be of considerable importance in
many technical applications, since the heat-transfer and friction coeffi-
cients depend strongly on whether the flow is laminar or turbulent. Exam-
ples where direct application could be madeinclude (i) cooled turbine
blades or airfoil sections, (2) aircraft oil coolers, (3) gas-turbine plant
regenerators and intercoolers, and (4) the wings of long-range aircraft.

Since the current theory of instability is unable to predict directly
anything regarding the transition point, it is necessary to resort to
experiment. The primary purpose of the present study was to investigate
the practical possibilities of delaying transition, and thus increasing
the transition Reynolds number, by cooling the laminar boundary layer
in a gas.

The present investigation was carried out in the entrance zone of
a smooth round tube. A tube was used primarily for simplicity. However,
manyof the important technical applications are actually of this geometry;
and, in addition, the flow near the entrance of a tube behaves much like
that on a flat plate. _e principal difference between the two flows is
that a favorable pressure gradient exists in the tube. A secondary objec-
tive of the present investigation was to measure and correlate the local
apparent friction factor in the entrance zone of a tube.

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.
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SYMBOLS

cross-sectional area of tube

flow coefficient of contraction nozzle

skin-friction coefficient, Vw/ipv 2

diameter of tube

local apparent friction factor, defined by the equation

_4fAp P _ dp/d(x/D)

2

mean apparent friction factor up to a section x = L, defined

by the equation

conversion constant in Newton's second law

axial length from entrance of tube for which mean apparent

friction factor 4_Ap P is evaluated

static pressure at section x

static pressure at entrance to tube, that is, at x = 0

stagnation pressure in stilling chamber

volume flow rate through test section

diameter Reynolds number, based on tube diameter and on free-

stream properties, PoVD/_o

length Reynolds number, based on length from tube entrance

and on free-stream properties_ PoV_/_o

length Reynolds number, based on length from tube entrance

and on fluid properties taken at arithmetic mean of stream

and wall temperatures, PmV_./_n
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stagnation temperature in stilling chamber

wall temperature

axial velocity at any location x and y

axial velocity in frictionless core

mean one-dimensional velocity in x direction, Q/A

axial distance from tube entrance

proper mean distance x for a measured value of local apparent
friction factor

radial coordinate in test section measured from wall

boundary-layer thickness

coefficient of viscosity

mass density

dimensionless parameter, (x/D)/Re D = Rex/ReD 2

functional relation

shea_ stress at wall

Subscripts:

o free-stream condition (essentially the same as stagnation in

these tests)

m mean taken at arithmetic average of wall and stream temperatures

Special terms:

The term "Reynolds number" always means Rexl unless otherwise

stated_ Re D is referred to as "diameter Reynolds number."

The term "transition point" means the point at which the velocity

profile begins to deviate significantly from that of laminar flow as

evidenced by a change in the local apparent friction factor.

The term "instability point" means the point at which the laminar

profile first becomes unstable to a vanishingly small disturbance of any

frequency.
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DESCRIPTION OF TEST APPARATUS

A flow diagram of the test apparatus is shown in figure l(a). The

main components are the air supply system, air heaters, stilling chamber,

test section, and instrumentation. Atmospheric air was used in all tests

and was supplied to the test apparatus from a 125-pound-per-square-inch-

absolute, 400-cubic-foot-per-minute reciprocating compressor discharging

through an aftercooler, receiver tank, and approximately 150 feet of

2-inch pipe. After passing through two 12-kilowatt air heaters in series

and through a series of three short-radius elbows, the air was brought

into the stilling chamber (fig. l(b)) by means of a 7° conical diffuser

made of sheet metal.

Large-scale disturbances were removed by a honeycomb made of an

annular shell tightly packed with aluminum tubes of high length-to-diameter

ratio, designed to maintain laminar flow in and between the tubes for all

flow rates of the present tests.

The honeycomb was followed by 15 damping screens made of Monel screen

soldered to annular rings of 9_-inch inner diameter. All the screen

retainers and the honeycomb shell were cut from a single piece of steel

tubing and reassembled inside a section of lO-inch steel pipe which acts

as a pressure shell. A large number of screens were employed to maintain

a low turbulence intensity at the entrance to the test section, even though

relatively large disturbances were introduced by the valves, air heaters,

and elbows in the upstream flow system. The screen used was of mesh size

and wire diameter such that it should not shed vortices for any available

flow rate according to the data of references 12, 13, and 14. The stilling

chamber and piping downstream from the heaters were covered with 4 inches

of Fiberglas insulation and sealed with a coat of Insulag. This was suf-

ficient to reduce the temperature drop between the main flow and the

stilling-chamber wall to a few percent of the total temperature difference.

Velocity and temperature traverses were made at the exit plane of

the stilling chamber before the initial assembly of the test section.

The velocity profile was found to be flat to within less than 2 percent

except in the boundary layer which extended 0.i to 0.15 inch from the

wall. The temperature profile was flat to approximately I° F except in

the boundary layer even when the most uneven heater-element combination

was employed.

After the tests had been completed, an attempt was made to measure

the intensity and scale of turbulence in the exit plane of the stilling

chamber, but upstream of the boundary-layer suction slot. The only hot-

wire anemometer equipment available was designed for application to flows

of higher turbulence intensity and scale. Consequently, the actual value
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of scale in the apparatus could not be measured, and the intensity measure-
ments except in the boundary layer were almost entirely maskedby the
random electronic noise introduced by stray electromagnetic radiation.
It was found, however, that the scale was considerably less than 0.015 inch
for the range of flow rates used in the tests. The turbulence intensity
u'/U in the boundary layer along the stilling-chamber wall, upstream of
the boundary-layer suction slot, was found to be approximately 0.003 for
low flow rates and 0.02 for flow rates corresponding to the highest used
in the tests. The turbulence intensity in the core of the flow was com-
pletely maskedby the randomnoise output on the electronic voltmeter at
all flow rates. If the actual voltage due to the turbulence is taken as
the order of the least count of the voltmeter (and it was apparently not
larger than this), a value of u'/_ of 0.0005 to 0.001 was obtained for
the core.

From the stilling chamberthe flow passed through the contraction
nozzle. The contraction was achieved in two steps: The first from
i to 3 inches and the second from 3 to i_ inches. Each step was designed
97 4

to avoid positive pressure gradients completely, using the data of Rouse

and Hassan (ref. 15).

In the second group of tests a boundary-layer suction piece

(fig. l(b)) was inserted between the stilling chamber and the contraction

nozzle. It consisted of two rings of 24S-T4 aluminum machined to provide

a O.125-inch-long boundary-layer suction slot designed according to the

recommendations of Loftin and Burrows (ref. 16). The suction flow was

removed from the slot through 12 axially symmetric holes and was led out

through equal lengths of i/4-inch tubing to a header. From the header

the suction flow was discharged to atmosphere through a standard A.S.M.E.

flange-tap orifice plate and a control valve.

The test section (fig. l(c)), which was smoothly joined to the con-

traction nozzle, was fabricated from a piece of seamless brass tubing

60 inches long, with a 1.25-inch inside diameter and O.125-inch wall

thickness. The test pipe had 21 wall static-pressure taps with a diameter

of 0.020 inch. Except for the first few taps the spacing (see table I)

was arranged to give a distance between successive taps of approximately

12 percent of the length from the inlet of the test section. The taps

were located on a helix with 70° of arc between successive taps so that

no two taps lay on the same axial llne. All taps were made with extreme

care by four stages of alternate drilling of the hole and lapping of the

inside of the tube to insure freedom from burs. The test tube was finally

polished bright inside.

The test section was enclosed in a tank which could be filled with

water to control the test-tube wall temperature. This tank was also sup-

plied with air jets to agitate the water and maintain uniform temperature.
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The pressure taps were connected by a manifold system to a Foxboro
micromanometer. The manifold system had two needle valves in series in
each line and was so arranged that each pressure tap could be connected
to either manifold box.

The mass flow was obtained by measuring the pressure drop across
the contraction nozzle and, as a check, by measuring the pressure drop
across a standard A.S.M.E. flange-tap orifice meter installed upstream
of the heaters. A manometerwas used to measure the total pressure in
the stilling chamber, and the temperature in the stilling chamberwas
measuredby iron-constantan thermocouples.

For the cooled runs, three thermocouples were installed in tangen-
tial slots in the tube wall and were carefully soldered over. In addi-
tion, three thermocouples were used for measuring the temperature of
the contraction nozzle and of the shoulder joining the latter to the test
pipe.

TESTPROCEDURES

First Groupof Runs (No Boundary-Layer Suction)

Adiabatic runs.- After preliminary runs were made and the leaks

had been reduced to a satisfactory level, i0 runs at various values of

ReD were made to determine the adiabatic performance of the system.

In general, measurements of pressure drop in the tube were taken in

sets of three in such a way that two of them could be checked against

the third. For example, measurements might be taken successively between

taps i and 2, 2 and 3, and i and 3. The first two readings were then

added to check against the third.

Cooled runs.- In all cooled runs a warmup period of approximately

4 hours preceded testing. During this time temperature readings were

recorded approximately every half hour and the various controls adjusted.

The air temperature was maintained constant at a value of approximately

325 ° F.

Despite the radial slots cut in the small end of the contraction

nozzle to serve as heat-flux barriers, it was found initially that end

conduction from the test section lowered the temperature of the inner

wall of the contraction nozzle to a value about midway between that of

the cooling water and that of the air stream. To eliminate this temp-

erature differential, electrical heaters were installed on the contrac-

tion nozzle, each controlled through a separate Variac. These Variacs

were trimmed to maintain the contraction nozzle at essentially air-stream

temperature.
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Whenthermal equilibrium had been reached with a given flow rate_
supply pressure_ and supply temperature_ three complete sets of data
were takenj each with a different wall temperature. The three wall
temperatures were obtained by filling the tank surrounding the test sec-
tion successively with hot water_ air 3 and cold water.

Whenwater was used as a coolant, a trickle of air was bubbled through
as a stirring device. To check that the agitation associated with this
stirring did not effect transition_ the air was turned on and off several
times and measurementswere repeated at points near the end of the laminar
zone. This was done in several runs and with amountsof stirring con-
siderably greater than normally used. No shift in the transition point
was found.

Second Group of Runs (Boundary-Layer Suction)

In the second group of runs all procedures were the sameas described
for the first group_ but_ in additionj the flow through the boundary-layer
suction slot was held constant in each run.

Accuracy of Results

The following table presents the percentage accuracy of the results
in terms of uncertainty intervals based on 20-to-i odds. This meansthat
the odds are 20 to i against the percent error in any one value of a result
exceeding the stated percentage. For example_ the odds are 20 to i that
the error in any one value of Rex near the entrance at low flows does
not exceed 3 percent. The uncertainty intervals given below have been
found from a combination of statistics and judgement_ and they should be
regarded as best estimates rather than absolute values. A more complete
description of this method of error analysis is given by Kline and
McClintock (ref. 17).

Uncertainty interval for 20-to-i odds as a
percent of results for which specified

Result Low flow rates High flow rates

Near entrance Near exit Near entrance Near exit

Re x

4fApp

4fApP (R_)

Re D

2

3

5

6

I

2

2

i
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EFFECTOFCOOLINGONTRANSITION

Behavior of Flow in Entrance Zoneof SmoothRoundTubes at

High Reynolds Numbers

Shapiro and Smith (ref. 18), investigating the local apparent fric-
tion factor in the entrance section of smooth round tubes, found a zone
near the entrance where the boundary layer was laminar and where the gen-
eral behavior was like that on a flat plate. The laminar zone, in which
the local apparent friction factor varied inversely with the square root
of the length Reynolds number_extended to length Reynolds numbersbetween
i00,000 and 500_000. After a rapid increase through the transition region,
the local apparent friction factor then decreased again (approximately
inversely with the one-fifth power of Rex) in the turbulent entry zone
and, as the velocity profile becamestationary, finally approached the
K_rm_n-Nikuradse friction factor for fully developed turbulent pipe flow.

It should be noted here that the local apparent friction factor
fAPP is identical with the skin-friction coefficient for fully developed

pipe flow but differs from the latter near the inlet of a pipe. The
velocity profile in the entrance zone of a tube changesas the flow moves
downthe tube, thus causing a pressure changedue to the change in the
momentumflux from section to section. Since the square velocity profile
at the tube inlet has less momentumflux than any other profile for the
same flow rate, the momentumchanges in the entrance section cause a drop
in pressure over and above that due to skin friction. The local apparent
friction factor, defined by the equation

_4fAep = dp/d(x/D)
2

2

is the sum of the pressure drops due to momentum change and to skin fric-

tion. It is always greater than the skin-friction coefficient in the

laminar entrance zone.

In the experiments reported here, the Reynolds numbers at the tran-

sition point for adiabatic flow varied from 400_000 to over 3,750,000.

This large variation was due (i) to the change in the disturbance level

of tile stream as the flow was altered, (2) to certain modifications that

were made between the first and second groups of runs, and (3) to the

use of boundary-layer suction in the second group of runs. The distinc-

tion between the first and second groups of runs is that the joints in

the contraction nozzle were further lapped and the boundary-layer suction

apparatus was added between the two groups of runs. In the first group



NACATN 3048 ll

of runs no boundary-layer suction was used_ in the second group of runs
several constant values of boundary-layer suction flow were employed.
Since the adiabatic perfo_nance of the system was not the samein the
first and second groups of runs, it is necessary to describe the two
groups of runs separately. In the following discussion the adiabatic
performance of the first group and then of the second group of runs will
be described. This will be followed by a discussion of the results
obtained in the comparable cooled r_s.

Adiabatic Performance

First group of runs (no boundary-layer suction).- The adiabatic

characteristics of the system for the first group of runs with no boundary-

layer suction are shown in figures 2(a) to 2(c). These are all log-

arithmic plots of apparent friction factor against free-stream Reynolds

number. The points shown in these plots were computed from the data as

described in appendix A.

The point where transition begins is taken to be the point at which

the data deviate appreciably front a straight line with a slope of approx-

imately -1/2. In figure 2(a) it will be seen that this point occurs

between 475,000 and 550,000 and increases as the di_ieter Reynolds n,_n_er

decreases. In figure 2(b) the transition Reynolds number varies from

i_600,000 to something greater than 2,300,000, again increasing with

decreasing diameter Reynolds number.

All the adiabatic data from the first group of runs are shown in

figure 2(c). This figure clearly shows a sudden jump in the value of

the transition Reynolds number occurring at a dism_eter Reynolds number

of about 65_000. At this same flow rate an audible pulsation with a

frequency of approximately 2 cycles per second occurred in the flow and
could also be observed on the manometers. For all flow rates below that

of pulsation the transition Reynolds n_uber was of the order of 2 x i06_

for all flow rates at or above that of pulsation the transition Reynolds
number was of the order of 5 x 105 • The sudden decrease in the transi-

tion Reynolds n_er with increasing flow was attributed to some portion

of the tunnel system upstream of the test pipe reaching a critical Reynolds

number at which vortices were shed or the boundary layer became turbulent.

This would in turn produce an increase in disturbance level at the tube

entrance and a consequent decrease in the transition Reynolds number.

It is believed that the pulsation observed was caused by a phenom-

enon similar to that which accounts for the well-known "spurting-jet"

experiment_ namely, that in a certain range of supply pressure there is

no steady flow possible because the change from a laminar to a turbulent

bo_mdary layer may produce a discontinuity in the curve of head loss

against flow for the system.
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The change in the flow regime described above allowed tests of the

effects of cooling at what amounts to different levels of disturbance in

the tunnel.

Second group of runs (boundary-layer suction).- The second group of

runs was undertaken to determine whether the effects of cooling on tran-

sition had been masked in the first group of runs owing to the presence

of a slight thermal boundary layer and to an unduly high initial disturb-

ance level in the boundary layer. For this purpose the boundary-layer

suction apparatus described previously was constructed and installed.

In the required disassembly it was found that some oil residue and dirt

had accumulated on the spacer retaining the screen rings just ahead of

the contraction nozzle. It was also noticed that a discoloration had

occurred in one zone just behind the joint of the test tube to the con-

traction nozzle and that the converging portions of the nozzle had accu-

mulated a thin fi_ of sludge and very fine dirt particles. All of this

dirt was removed. In addition, both joints in the contraction nozzle

were further lapped. The entire contraction nozzle and test section

were then polished bright on the inside. At the end of this operation

neither joint could be found by touch.

The adiabatic performance of the system during the second group of

runs is shown in figures 3, 4(a), and 4(b). The behavior of the system

was found to be different for each of several ranges of flow rate. The

first range extended up to a flow rate corresponding to a diameter Reyn-

olds number of approximately 803000. In this zone laminar flow extended

down the entire length of the tube for all rates of boundary-layer suc-

tion flow. In run D-2_ at a diameter Reynolds number of 78,000_ it is seen

from figure 3 that laminar flow extended to a Reynolds number of at least

3.75 × ]06. R_m D-2 was taken with special care using virtually all tap

combinations to provide a check on tap perform_nce and to obtain the

best possible apparent local friction factors for the laminar entrance

zone. The apparent local friction factors measured in this run are

believed to be the best obtained, not only because of the care used but

also because the flow rate was high enough to give very good precision

of measurement in the pressure drops for all but a few points and also

because there was no turbulent flow anywhere in the pipe to act as a

disturbing influence.

For flow rates in the range of Reynolds number from 85_000 to i00_000

an audible pulsation again occurred in the system at a frequency of approx-

imately 2 cycles per second if no boundary-layer suction flow was used.

The pulsation persisted over a wider range of flows than that in the first
group of tests.

At flow rates above the pulsation zone the transition point occurred

at a length Reynolds number of approximately 700_000 when no boundary-

layer suction was applied; as shown by the curves marked Qsuction/qtest/= 0
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in figures 4(a) and 4(b). Application of boundary-layer suction in the
zone of flow rates corresponding to diameter Reynolds numbersfrom 85,000
to 125,000 brought about a marked increase in transition Reynolds number.
This effect is shownin figures 4(a) and 4(b) where the transition Reyn-
olds number is increased from 700,000 to 1.8 × 106 by application of
boundary-layer suction. In general, there is an optimum amount of
boundary-layer suction flow which gives the greatest Reynolds number at
the transition point_ although, for any amount of suction flow greater
than a certain critical amount, the change in the transition Reynolds
numberwith variations in suction flow was not significant in this system.

In the zone of flow rates giving a pulsation with no boundary-layer
suction flow, the application of any amountof flow through the boundary-
layer suction slot greater than the critical amountwould eliminate the
pulsation in the main flow entirely. In the zone of flow rates greater
than that at which pulsations occur, but less than that for a diameter
Reynolds numberof 125,000, application of increasing amounts of boundary-
layer suction flow would first cause no change, then would bring about
a pulsation, and finally would eliminate the pulsation again. This series
of events was accompaniedin each case by an increase in the transition
Reynolds numberfrom approximately 700,000 to 2,000,000. This is a good
verification of the theory proposed previously to explain the sudden jump
in the transition Reynolds numberencountered in the first group of tests.

Demarcation of transition point.- In examining figures 2 to 4, it
will be noticed that in some instances the friction factor first deviates

downward from the laminar line before increasing to the turbulent value.

In other instances it first rises. The downward deviation is undoubtedly

due to the momentum decrease associated with the onset of transition.

This belief is strengthened by the fact that the downward dip is always

more pronounced for those runs where the transition Reynolds number is

higher. For these cases the boundary layer would be thicker, and a

change in the velocity profile within the boundary layer from a laminar

type to a turbulent type would produce a greater decrease in momentum

flux and thus would tend to produce a greater decrease in the apparent

friction factor.

The transition point in the present tests has been taken as the

point where the apparent friction factor deviates from the straight line

of laminar flow either upward or downward on the logarithmic plots of

4fAp P against Re x . This point is hard to determine exactly because of

the uncertainty in the data and of the finite number of taps. Observa-

tion of the figures will show, however, that the onset of transition is

defined in most cases to within i0 or at most 20 percent. To be tech-

nically significant as a means for controlling transition_ cooling would

have to delay transition to the extent that the Reynolds number at the

of transition in the cooled case was at least 121--or 2 timesbeginning

the value which occurred in the comparable adiabatic flow. An uncertainty
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in Rex of even 20 percent is, therefore, satisfactory for the present
purpose.

Results for Cooled Runs

The results of the first group of runs, without boundary-layer suc-
tion, are shownin figures 5(a) to 5(J). The results of the second group
of runs, with boundary-layer suction, are shownin figures 6(a) to 6(d).
Each graph showsa series of runs with all variables held constant but
wall temperature. All the data are presented in two ways. For the first
group of runs figures 5(a) to 5(e) are logarithmic plots of local apparent
friction factor against free-stres_ Reynolds number, while figures 5(f)
to 5(J) are logarithmic plots of the samedata showing local apparent
friction factor against meanboundary-layer Reynolds number. Similarly,
for the second group of runs figures 6(c) and 6(d) showthe samedata
as figures 6(a) and 6(d) but figures 6(c) and 6(d) are plotted on the
basis of meanboundary-layer Reynolds number instead of free-stres_l Reyn-
olds ntmlber.

The graphs shownin figures 5 and 6 cover a range of diameter Reyn-
olds numbersfrom 50,000 to 106,000 and include cases showing Reynolds
numbersat the transition point in the adiabatic flow from 500,000 to
1,800,000. All of these graphs showthe samemain results: (i) The
free-stre_Ll Reynolds numberof transition is not significantly changed
by cooling, and (2) the meanboundary-layer Reynolds numberof transition
is usually increased by cooling. The maximumincrease in the meanboundary-
layer Reynolds numberof transition is of the order 75 percent for an
applied temperature difference of 270° F and a ratio of wall to stream
temperature of 0.66. The increase in meanboundary-layer Reynolds number
at the transition point indicates an increased stability due to cooling,
as would be predicted from the calculations of Lees and Van Driest. But
the temperature-viscosity relation is such that in these cases the free-
stress. Reynolds numberof transition is not significantly changed. In a
few cases it will be observed that the free-stream Reynolds number at the
transition point is actually decreased slightly by cooling (e.g., fig. 6(b)).

From the design point of view the significant quantity is the free-
stream Reynolds numberof transition because this determines the physical
location of the transition point. While cooling appears to increase
slightly the boundary-layer Reynolds numberof transition, the net effect
on the physical location of the transition point is hardly discernible
because of the compensating effect of the change in boundary-layer
viscosity.

For the flow of air past a flat plate at Machnumbersbetween 0
and 0.5 and a ratio of wall to stream ten_eratures of 0.66, Lees (ref. i0)
predicts an increase in the minimumfree-stream Reynolds numberat the
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instability point of approximately 2,000 times the Reynolds number at

the original instability point. For the same conditions the calculations

of Van Driest (ref. ii) show an increase of approximately 30 times in

the minimum value of the free-stream Reynolds nu_er at the instability

point. Since this temperature ratio and Mach number were obtained in

the present tests, there is apparently little if any correlation between

the calculations of Lees and Van Driest on the instability point and the

behavior of the transition point found in the present tests.

In order to interpret these results more fully_ the work of other

experimental investigators which is now available will be summarized.

Summary of Other Data - Effect of Heating and Cooling on Transition

There appear to be only two published works on the effect of cooling

on transition. Scherrer (ref. 19) investigated the effect of cooling

for air flow past a 20° cone at Mach numbers of 1.5 and 2.0. At a Mach

number of 1.50 transition was delayed by almost i00 percent through the

application of 60° F to 90 ° F of cooling at a ratio of wall to free-

stream temperature of 1.04. For these conditions the theory of Lees

(ref. i0) predicts an infinite value for the minimum Reynolds number at

the instability point. At a Mach number of 2.0 Scherrer found an increase

in the free-stream Reynolds number at the beginning of transition of

approximately 70 percent with 40 ° F to 50o F of cooling and a ratio of

wall to stream temperature of 0.P23. Lees' theory predicts the Reynolds

nu_er at the instability point to be infinite for this case. The tran-

sition Reynolds n_mber for adiabatic flow in these experiments was meas-
ured as 3.75 x i0_.

Monaghan and Cooke (ref. 20) found an increase in transition Reyn-

olds number, owing to cooling, of roughly 50 percent for air flow on a

flat plate at a Mach number of 2.43, the adiabatic transition Reynolds

number being 500,000. The m_lount of cooling supplied was again enough

to give an infinite value for the Reynolds number at the instability

point according to Lees' calculations.

Since these cooling data are meager, the available data on the effect

of heating will also be sun_larized here.

Scherrer (ref. 19) investigated the effect of heating on transition

for flow of air past a 20 ° cone at a Mach numLber of 1.53. At a total

pressure of 21 pounds per square inch absolute a decrease of approximately

20 percent in transition Reynolds number was observed when the surface

temperature of the cone was increased from approximately 180 ° F to 220 ° F.

No comparable adiabatic data were reported, but extrapolation of their

data indicates an adiabatic transition Re$_olds number of the order
of 1.7 x iOU. At a total pressure of 14.8 pounds per square inch absolute
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a decrease of approximately i0 percent was observed in the transition

Reynolds number as the surface temperature was increased from 160 ° F

to 220 ° F. Again no comparable adiabatic data are given, but extrapola-

tion yields an adiabatic transition Reynolds number of roughly 1.4 x 106.

Monaghan and Cooke (ref. 20) observed the effect of heating in air

on a flat plate at a Mach number of 2.43. For a ratio of wall to stream

temperature of 1.57 they found a decrease in transition Reynolds number

of 36 percent. At a ratio of wall to stream temperature of 1.60 they

found a decrease in transition Reynolds number of 41 percent. In both

cases the adiabatic transition Reynolds number was 550,000. The observed

effects of heating on transition were far less than the effects predicted

by the theory for the change in the point of laminar instability.

Higgins and Pappas (ref. 21) investigated the effect of heating on

a flat plate in air at a Mach number of 2.40. They found a decrease of

only 50 percent in the transition Reynolds number for a ratio of wall

to street temperature of 2.86, which is far less than what might be antic-

ipated from the theory. The adiabatic transition Reynolds number was
1.25 x i0_.

Liepmann and Fila (ref. 22) investigated the effect of heating for

air flow on a flat plate at essentially zero Mach number. Two turbulence

levels were used. At a turbulence level of u'/'_ = 0.0005 a decrease

of 28 percent in the transition Reynolds number was observed for a ratio

of wall to stream temperature of 1.43. For the same ratio of wall to

stream temperature and a turbulence intensity of u'/U = 0.0017, a decrease

of 40 percent was observed. In both cases the adiabatic transition Reyn-

olds number was 500,000. This surprisingly low value of transition Reyn-

olds number at these turbulence levels was attributed by the authors to

the effect of transverse cont_uination. For this temperature ratio Lees'

theory (ref. i0) predicts a decrease in the Reynolds number at the insta-

bility point of roughly 50 times and that of Van Driest (ref. ii) pre-

dicts a decrease in the Reynolds number at the instability point of

approximately twelvefold.

Implications of Results

Internal flows.- The present results indicate clearly that no sig-

nificant change in the Reynolds number at the transition point can be

expected due to cooling in normal internal flows. In most internal

flows large disturbances are present. Under these conditions cooling

seems to bring about little change in the Reynolds number at the tran-

sition point.

In the present investigation the turbulence level was considerably

below that normally encountered in internal flows, but no significant
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effect of cooling was found. It is, of course, possible that an effect

would be found in tests with still lower turbulence levels, but the

difficulties involved in producing these low turbulence levels would

make such tests inapplicable for almost all practical situations.

General theory of transitionl. - From the foregoing discussion of

the present results and the results of other investigators two major

points concerning the location of the transition point are evident:

(i) The amount of disturbance present has a strong effect on the Reynolds

number at the transition point; (2) heating or cooling creates a change

in the transition Reynolds number in the direction indicated by the theo-

retical calculations, but the quantitative effect is always at least one

order of magnitude less than the predicted shift in the Reynolds number

of the instability point. In addition, a third point appears which is

not yet convincingly proved, namely, that the percentage change in the

transition Reynolds number due to a given amount of heating or cooling

increases as the transition Reynolds number for adiabatic flow increases

(i.e., as the initial disturbance level decreases).

In the present tests the disturbance level of the tunnel increased

with increasing flow, causing a decrease in the transition Reynolds num-

ber from 5.75 × 106 to 4 × 105 • This disturbance level is not a simple

function of one variable but appears to depend strongly on the turbulence

in the free stream and in the boundary layer of the stilling chamber as

well as on the smoothness and cleanliness of the joints and pressure

taps in the test section. Random external noise and random agitation

of the water around the test section seemed to have little or no effect.

Shapiro and Smith (ref. 18) found similar results for a tube, although

the disturbance levels of their tests were apparently larger, giving a

range of transition Reynolds number from i × 105 to 5 X 105. Similarly,

on a flat plate, Sehubauer and Skramstad (ref. 5), as well as many other

observers, found that the transition Reynolds number could be increased

by a factor of more than 40 times by reduction of the disturbances in

the flow. It may be recalled that no investigators prior to Schubauer

and Skramstad had found experimental evidence of Tollmien-Schlichting

type oscillations, apparently because of the high disturbance levels of

the early tests. In such cases, as noted by Schubauer and Skramstad,

the large disturbances distort any possible measurements of Tollmien-

Schlichting waves. And, since the current theory deals only with very

small disturbances, there is at present no experimental or theoretical

information concerning how transition is brought about when large disturb-

ances are present in the flow except that of Taylor (ref. 23) which

deals only with the effect of free-stream turbulence and is based on a

supposition concerning a relation between separation and transition.

iThis section was read in advance by Professor C. C. Lin who gen-

erously made several helpful suggestions.
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Thus, several important questions remain unanswered. First, is the
mechanismby which transition is brought about in the case of large dis-'
turbances the s_meas that when only vanishingly small disturbances are
present? This is more or less the sameas asking whether the nonlinear
terms of the differential equation behave in the samefashion as the
linear terms which have already been investigated theoretically. Secondly,
if the mechanismis essentially the samefor large disturbances as for
small, is the zone in which large disturbances are amplified the sameas
that for small disturbances ?

These questions are related to the question of metastability of a
given profile as opposed to complete stability. A knownexample of a
metastable behavior is that of Poisseuille flow. Manyexperiments have
established the following facts concerning Poisseuille flow. For all
diameter Reynolds numbers less than approximately 2,000 the Poisseuille
profile is completely stable, returning to laminar flow even if greatly
disturbed. For diameter Reynolds numbersabove 23000 the flow is gen-
erally said to be "unstable." But the actual value of diameter Reynolds
number to which laminar flow persists depends strongly on the level of
disturbance present, the diameter Reynolds numberof transition seeming
to increase continually as the amountof disturbance is decreased. Such
a condition would more properly be referred to as metastable, inasmuch
as theoretical studies of the stability of the Poisseuille profile in
the presence of vanishingly small disturbances have thus far failed to
show an instability.

Admittedly, no proper conclusions regarding the flat-plate tran-
sition can logically be drawn by analogy to the Poisseuille case, since
from the point of view of stability the two flows are quite different.
However, there remains the possibility that a similar situation regarding
metastability exists on a flat plate_ and it is entirely conceivable that
a small, yet sufficiently large, disturbance can cause transition on a
flat plate by a mechanismunrelated to the present small-disturbance
theory.

Another question remaining unansweredby the present theory is the
interaction of various disturbances in causing transition. That such
effects can be important was demonstrated by Liepmann (ref. 7) who showed
that the superposition of a relatively small amount of noise, which by
itself would have had a small effect, was sufficient to cause a large
effect on transition at the trailing edge of a single bump.

The present results on the effect of cooling on transition, as well
as the results of other investigators summarizedabove_ tend to emphasize
the incomplete state of the present knowledge on this subject. This is
particularly true with regard to the possibility of other mechanismsof
transition apart from that which has been so well demonstrated by the
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theoretical work of Tollmien_ Schlichting, Lin, and other investigators
and the experimental work of Schubauer and Skramstad and of Liepmann.

It should be kept in mind that the present results do not meanthat
the current theory of instability is necessarily in error. But the results
of calculations concerning the instability point must be applied with
extreme caution, if at all, to the prediction of transition. However,
the present results coupled with the results of other investigators do
indicate that considerable further study is needed, particularly on the
subject of nonlinear effects and other possible mechanismsof transition.
The importance of such study is emphasizedby the three unansweredques-
tions discussed above. It will be noted that each of these questions is
concerned with an essentially nonlinear effect, and it is unlikely that
stability theory can be used to any marked extent in predicting transi-
tion until at least qualitative answers are available to all three of
these questions.

Finally, it should be mentioned that the present results may not
be exactly applicable to a flat plate for the following reasons:

(a) There is a favorable pressure gradient in the tube, which in
itself is stabilizing. Quite possibly the stabilizing effects of cooling
might be smaller in the case of a favorable pressure gradient than in
the case of zero pressure gradient.

(b) There are somethree-dimensional (axisymmetric) effects in the
tube. These effects are believed to be very small in the present tests
because the range of variables was such that the boundary-layer thickness
was very small comparedwith the pipe radius.

(c) Becauseof convection currents owing to temperature gradients,
there mayhave been slight departures from conditions of axial symmetry
in the present experiments. Such a three-dimensional effect would almost
certainly have a destabilizing influence. Until further experiments are
performed, the significance of this factor can only be speculated on.

LOCALAPPARENTFRICTIONFACTORIN LAMINAR

ENTRANCEZONEOFSMOOTHROUNDTUBES

Review of Existing Theories

The present results convincingly demonstrate that the hypothesis
of Shapiro and Smith (ref. 18) concerning the establishment of a laminar
boundary layer and its subsequent transition to a turbulent layer in the
entrance of a tube at high Reynolds numbers is correct. The present
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results also show that this laminar layer can, by reduction of the dis-

turbance level, be extended to considerably greater Reynolds numbers

than would normally be expected.

There are at present several theories concerning the velocity pro-

files and apparent friction factors for the entrance of a tube in laminar

flow. The oldest of these is by Boussinesq (ref. 24). This solution has

long been known to give poor agreement with the data in the zone very near

the entrance and is, therefore, of little use in the present work.

The second work, by Schiller (ref. 25), gives good agreement with

the friction data but predicts entrance lengths that are somewhat too

short. Schiller's solution is based on the assumption of a parabolic

velocity distribution in the zone near the wall joined smoothly to a core

which is unaffected by viscosity and has a constant axial velocity. This

is equivalent to the assumption of a boundary layer and a mean flow cor-

related in such a way as to satisfy continuity. This solution should be

very good near the entrance to the tube where the layer affected by vis-

cosity is thin.

Atkinson and Goldstein (ref. 26) modified the solution of Boussinesq

and joined, it to a solution in the form of a series expansion at

: (x/m/R : 0.007 .

Langhaar (ref. 27) developed a complete single mathematical theory

which gives reasonable values of entrance length and velocity profiles.

In appendix B is presented a new and simple theory yielding a rela-

tion between the apparent friction factor in a tube and the skin-friction

coefficient on a flat plate.

Correlation of Present Results

All of the theories mentioned above yield results which may be put
in the form

where _ denotes a functional relation. In other words, the pressure

drop from the entrance to any other point depends only on the combined

'RED2 ,parameter Rex/ rather than on the individual parameters Re x and

Re D. A plot of 4_App(L/D ) against _ should thus yield a correlation

of the mean apparent friction factor for all tubes at all flow rates.
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In the case of the local apparent friction factor a different gen-

eralized correlation may be obtained from the foregoing relation. Since

it follows by differentiation that

d

Then, differentiating the relation

and noting that Re D is constant during differentiation with respect to

x/D, one gets

d(x/D)

i plot of (4fApp) Re D against

local apparent friction factors.

d(x/D) ReD Re D

should therefore correlate all the

In figure 7(a) all of the adiabatic data in the laminar zone are

plotted in this manner. It is seen that all the data lie within !7 per-

cent and that 95 percent of the data lie within ±5 percent of the line

given by the expression (Re_4fApp = 6.87/_. This 5-percent scatter

is what would be predicted from the uncertainty interval given in the

table in the section "Accuracy of Results." In figure 22(a) the open

points, representing the runs at high diameter Reynolds numbers, and

the closed points, representing the runs at lower diameter Reynolds num-

bers correlate equally well. The method of correlation, therefore,

appears to be satisfactory, but it must be tested over a wider range of

diameter Reynolds numbers before it can be finally accepted.

A further check on the correlation is shown in figure 7(b) in which

the mean line of the data given by (ReD)4fAp P = 6.87/@ is compared

with the present theory and with that of Schiller as well as with the
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points from run D-2 and with the data of Shapiro and Smith (ref. 18).
There is good agreement throughout.

It will be noted from figures 5(f) to 5(J), 6(c), and 6(d) that the
adiabatic and the cooled data for the local apparent friction factor in
the laminar zone can be correlated on a single line by the use of the
meanboundary-layer Reynolds number, whereas the use of the free-stream
Reynolds numberproduces sizable deviations between the adiabatic and
cooled data as shownby figures 5(a) to 5(e), 6(a), and 6(b). The use
of the arithmetic meanof the temperature as a base for the boundary-
layer Reynolds numberappears therefore to give entirely adequate
correlation of the cooled and adiabatic data. The correlation
4fAppi,ReDi : 6.87/V_ for the local apparent friction factor can thus
be used when the stream is cooled if the Reynolds number is based on the
properties at the arithmetic meanof stream and wall temperatures. It
will probably apply with reasonable accuracy to heating as well.

In order to comparethe results shownin figure 7(b) with the theories
of Atkinson and Goldstein, of Langhaar, and with the complete theory of
Schiller, the equations in figure 7(b) were integrated analytically.
The results of these integrations together with the other theories are
shownin figure 8 as a plot of 4TApp(L/D) against o. It is seen that
all the theories except that of Langhaar agree well with the integrated
extrapolation of the data up to _ = 0.005. For larger values of
the theories of Schiller, of Atkinson and Goldstein, and of Langhaar grad-
ually curve away from the straight line representing small values of o
and approach as an asymptote the straight line with slope equal to unity
marked "Poisseuille flow."

Figure 8 shows that the laminar flow through a tube can well be
thought of as passing through three zones, roughly demarcated by
0 _ a $ 0.005, by 0.005 _ a _ 0.i, and by a _ 0.i. In the first zone
the flow behaves essentially like that on a flat plate with a boundary
layer which is thin comparedwith the tube radius. In the second zone
a gradual shift occurs as the boundary layer reaches the axis of the
tube. The third zone is the well-known Poisseuille flow (fully developed
laminar pipe flow). All the present data for the laminar entrance zone
lie well within the first zone as can be seen in figure 7(a). The behavior
of the boundary layer in the present tests is thus essentially like that
on a flat plate.

CONCLL_IONS

From an experimental investigation of the effect of cooling on fric-
tion and on boundary-layer transition in the steady flow of air in the
entrance of a smooth round tube, the following conclusions are indicated:
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i. The amount of turbulence present in the free stream _nd in the
boundary layer, as well as the smoothnessand cleanliness of the walls_
has a strong effect on the transition Reynolds number in internal flows.
Smaller disturbances give higher transition Reynolds numbers.

2. Cooling apparently has little or no effect on the transition
Reynolds number in normal internal flows of air (which contain con_ara-
tively large disturbances). No significant effect of cooling on tran-
sition has been found even for disturbance levels giving adiabatic tran-
sition Reynolds n_nbers as high as 1.8 x 106.

3. The effect of cooling or heating on the transition Reynolds num-
ber appears to be greater when the disturbances in the flow are smaller.
A significant effect of cooling on transition might conceivably be found
in an internal flow if the disturbance level was reduced sufficiently to
give an adiabatic transition Reynolds numbergreater than 2 x i0 U. But
even if such an effect could be found_ the difficulties associated with
the production of such a disturbance level would makethe use of cooling
to control transition in internal flows unfeasible for most practical
applications.

4. In general, the evidence indicates that the effect of heating or
cooling on the transition Reynolds number in air is qualitatively in the
direction suggested by the calculations of Lees and Van Driest concerning
the Reynolds number at the instability point. But in every case the size
of the effect found experimentally for the shift in the transition point
is at least one order of magnitude less than the changepredicted for the
instability point.

5. There is no question that the destruction of the l_linar profile
and the onset of turbulence can be brought about by the amplification of
unstable waves in cases where the disturbances in the flow are sufficiently
small. The present results suggest that this mechanismmaywell be modi-
fied or even supplanted by another as the cause of transition when any
but vanishingly small disturbances are present in the flow.

6. The explanation of Shapiro and Smith concerning the existence of
a laminar boundary layer for a short distance from the entrance of smooth
tubes even at diameter Reynolds numbersmuchhigher than 2,000 has been
verified.

7- A correlation of the local apparent friction factor fAPP in

the laminar entrance zone can be obtained by plotting 4fApptRen] against
a_ where HeD is the diameter Reynolds numberand _ is a dimensionless
parameter given by a = (x/D)/Re D. For a _ 0.005 the meanline of the
present data is given by 4fApp(ReD) = 6.87/_r_. This is in good agree-
ment with the theory for the laminar entrance zone given herein which
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yields 4fApp(ReD) = 7.15/_ and with the approximate formula of Schiller,

8. Comparisonof the data with the theories of Langhaar, of Atkinson
and Goldstein 3 and with the complete theory of Schiller shows that the
formula 4fAppr_Re_i= 6.87/_ cannot hold for _ ->5 x 10-3 . It also\ _J
shows that laminar flow in tubes can well be thought of as divided into
three zones: For _ __<0.005 the flow behaves essentially like that
along a flat plate# for 0.005 _ e <_-0.i the flow alters as the Poisseuille
velocity profile is established# for _ __0.i steady Poisseuille flow
is maintained.

Massachusetts Institute of Technology_
Cambridge, Mass., September 30, 1952-
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APPENDIX A

ANALYSIS OF DATA

Discussion

Since no velocity exceeded 200 feet per second in any of the tests,

the flow was treated as incompressible.

The data for a given run were corrected to the basis of a standard

flow rate and standard properties which were selected to be in the mid-

dle of the range for the given test.

Flow coefficient of contraction nozzle.- The flow coefficient of

the contraction nozzle was compllted as a function of diameter Reynolds

number by the method of .Shapiro and Smith (ref. 18). The calculated

flow coefficient for the contraction nozzle is compared in figure 9 with

the flow coefficient recommended by the A.S.M.E. The method of calcula-

tion is given in the section "Calculation of flow coefficient for con-

traction nozzle."

Boundary-layer _rowth in contraction nozzle.- The effective entrance

point of the tube to be used in determining the values of the length

Reynolds number is subject to question, since some boundary layer builds

up in the contraction nozzle. The effective length of the nozzle was

analyzed both on a one-dimensional basis and by plotting of the early

adiabatic data for slope and minimum scatter. These considerations indi-

cated that this effective length was not more than 1.2 inches and not less

than 0.8 inch. With this in mind, the value of 1.00 inch was adopted for

the effective length of the nozzle to the first pressure tap. The latter

was located 1/16 inch downstream of the end of the curved nozzle contour.

Proper mean location between pressure taps.- In the method of meas-

urement used in these tests the local apparent friction factor was not

measured at a point but over some finite distance _x. It was therefore

necessary either to differentiate the curve of p against x or to

calculate the appropriate distance _ at which to plot a given value of

friction factor deduced from the ratio f_p/_x. The latter method was

employed throughout.

A good approximation for the proper value _ in the laminar entrance

zone of a tube, for _ _ 0.005, is the average of the arithmetic and

geometric mean values of the distance Irom the entrance of the tube to

the two taps used. A proof of this statement is given later. The dif-

ference between this value of _ and the simple arithmetic mean of the

distances to the taps from the tube entrance is small unless the ratio
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of the two distances is large. A graph of the percentage correction to
the arithmetic meanis shownin figure i0, from which it is seen that
the proper meandistance _ does not deviate from the arithmetic mean
by i percent until the ratio of the distances to the two taps from the
tube entrance exceeds 1.33.

In the transition and turbulent zones the ratio of the two values
of x between successive taps was always so near unity that the arith-
metic meanvalue for _ was used with the certainty that no appreciable
error was involved.

Development of Computing Equations

Calculation of flow coefficient for contraction nozzle.- For steady

incompressible flow between the stilling chamber and the first pressure

tap in the pipe, one may write

__ Po _ Pl Vl 2Vo2 + + __ + HL (AI)
2g pg pg 2g

where subscript o refers to the stilling chamber and subscript i to

conditions at the first tap. By continuity 2

Vl_ = 3,550

where do and dI are the diameters of the stilling chamber and test

section at the first tap, respectively, and thus it is possible to neg-

lect the term Vo2/2g in equation (AI). Hence,
I

PVl 2
Po - Pl - + pgH L (A2)

2

From the definition of 4YApp,

RL - 4YAPP(D )v1227
(A3)

Then, combining equations (A2) and (A3), there is obtained:

+
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or

i  21popl) (A41

The flow coefficient CD of the nozzle is defined by

V 1 = CD p

Comparison of equations (A4) and (AS) then shows that

(AS)

-- 1 (A6)

The values of the flow coefficient for the contraction nozzle shown in

figure 9 were obtained by use of equation (A6). The values of 4_App(L/D )

used for this purpose were obtained from the integrated form of the present

theory in the form

(A7)

and the value of L for the nozzle up to the first pressure tap was

taken to be 1.00 inch as explained above. These values of 4_App(L/D )

agree with the mean line of the data to 4 percent and the L of the

nozzle is known to approximately 15 percent. The uncertainty in the

value of the flow coefficient due to these possible errors, however, is

at most only 0.3 percent because of the form of equation (A6).

Calculation of Rexl and Rex2.- Using the curve of figure 9 for

the flow coefficient of the contraction nozzle together with equation (AS),

the free-stream Reynolds number can be found as:

Rexl __ = _PoCD 2(Po,I
Pl)

_o _o P

(AS)
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The meanboundary-layer Reynolds number Rex2 is the Reynolds number
based on the free-stream and wall temperatures. Noting that _ = b + cTO-74
for air where b and c are constants, Rex2 maybe related to Rexl
by the expression

ii .74Rex2 PmVl__ PoVI_ PmI_o_ Rex / 2To (A9)
= _m _o Po _ 1\To+Tw/

Calculation of 4fAp P from test data.- The apparent friction factor

4lAp P is, by definition, expressed by

-4f_p : _/A(x/D)
1 2

Combining this with equation (AS), it is found that

-4f_p = _l_(xlo) _ D _I_ (A10)

cD ( o- cD -

from which 4fAp P is conveniently computed from the measured data.

Proper Value of _ for Laminar Flow in Entrance Zone of

Tube for s _ 5 X i0 -5

The proper value of x for plotting a local apparent friction fac-

tor measured between two taps for laminar flow in the early entrance zone

of a tube is shown below to be the average of the arithmetic and geometric

means of the distances of the two taps from the entrance of the tube.

For _ __ 0.005 the local apparent friction factor can be expressed

bythe equation 4fApp (RED) = 6.87/_. For anyone run under steady-

state conditions this is of the form

4f_p: BI@ (_l)

where B is a constant for the run.
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Now let xn be the distance to the near tap and xr the distance

to the far tap. In the experiment, one measures an apparent friction

factor 4lAp P' which is some kind of a mean over the distance Ax = xn - x r.

That is,

4fAp P ' - 1 B__ _ _
Xr - Xn _n k_ Xr - Xn

which may be rearranged in the form

(A12)4fAp P _ _

What is needed now is the value at which

At a distance _ from the entrance of the tube,

by equation (All) as

!

4fAp P = 4fAp P •

4fAp P

Comparison of equations (AI2) and (AI3) then shows that

2

is given

(Al3)

or

x = Xr + 2 x_-_-nn+Xn4 - l( xr +xn2 + \xr_n)

which is the result stated previously.
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APPENDIX B

LAMINAR ENTRANCE TEEORY

In this appendix there is presented a simple theory for the laminar

entrance zone based on the integral momentum equations of the boundary

layer.

Relation between fAPP and Cf.- Consider a control surface of

width dx extending across the tube at section x as shown by the

following sketch:

V: Q p p+dp
A "----- t" 1 t

.......

The flow is assumed to consist of a frictionless core with the speed

uc together with an annular boundary la)er of thickness 6. As is usual

in thin-boundary-layer theory, the pressure is taken to be uniform over

each cross section. Since only the entrance region is of interest here,

where the boundary layer is very thin, it is assumed that 8/D is small

compared with unity. At the beginning of the tube (x = 0), the velocity

is assumed uniform with the value V.

The continuity equation may be written as

nD 2 ,_D/2
= _ 2_rpu dr4 pv Jo

FB ID t _j F'D/2 (D Y) dY (B1): _i 0u - _ dy+ _i 5 pUc -JO

The velocity distribution in the boundary layer is now assumed to

be of the form
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where m is a shape parameter independent of x.

The expression for u given by equation (B2) is now substituted into

equation (BI), thus giving

u C
+ u D

which, to first-order terms in 5/D, may be expressed approximately as

VD 2 # D/2 5 m
D

or, upon integration, as

_v : 1 4 _ + • (B3)
Uc m+iD

The dynamic equation for the frictionless core may be written as

-dp = pu c duc = p d(uc2/2)

By definition, the apparent friction factor is given by

_4fApp = dp/d(x/D) (_5)

Combination of equations (B4) and (B5) now yields

fAPP = _ d(x/D)

The momentum equation for the flow through the control surface is

FD/2
-_ D2 dp - Tw_D dx = d/ 2_rpu 2 dr
4
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A
Dividing this by I20V2_D dx, and noting that Cf- TW/20V2 , there

is

obtained

f#p: cf+ k diD/2
DV 2 _d 0 u2r dr

(B7)

The integral in this expression is evaluated with the help of equation (B2)

as

D/2 _,iu2r dr = 6 /

_0 _0 .c2E_
Carrying out the integration, there is obtained

f, DI2 (ucD) 2 3m + 1
u2r dr = - 5uc2D

'_I0 8 2(m + l)(2m + i)

(B8)

whence it follows from equation (B7) that

1 d [\uc/V)2 _//_m lUcl_
-- d 3m+ i 5_

f_p = cf + 2 d(x/D) 2 _ + l)(_ + l) D\v/J

m has been assumed to be independent of x, this expression maySince

be rearranged with the help of equation (B6) as

2(_m + i) d5 + 5 d c/V (B9)

f_p=Cf+2f_p (m+l)(_+l) _ 5 d(x/D)_

From equations (B6) and (B3) one may obtain, to first-order terms in 5/D,

f_P - 4 d(x/D)
_1 d

4 4 d(x/D)
m+ 1

m+l

or

2 d5 (B10)
fAPP _ m + i dx
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Replacing dS/dx in equa%ion (B9) with the value given by equa-

tion (BI0), and retaining only first-order terms in 5/D, there is finally

obtained after rearrangement

1 C (Bll)

Evaluation of m.- Equation (BII) gives a relation which depends

only on the assumptions of the analysis and which is not dependent on

an assumption of flat-plate-like flow. However, to choose a value of m,

it is necessary to compare with a known solution. For this comparison

the flat-plate solution of Blasius is used. This is equivalent to assuming

that the pressure gradient in the tube has a negligible influence on the

velocity profile in the zone y _ 5. In particular, m is evaluated so

that the friction factors obtained are in agreement with the Blasius

relation for flow past a flat plate with a velocity profile of the same
form as that used above.

When the integral boundary-layer theory is applied in the usual

manner to the flow on a flat plate with the velocity profile of the form

of equation (B2), there is obtained

2m 2: (m+ l)(m+ l) (B_)

whereas the exact Blasius solution for the flat plate yields

t-------

Cf_Re x : 0.664 (B13)

Comparison of equations (BI2) and (BI3) then suggests that one choose

the value

m = 1.4 5

in order to make the approximate solution identical with the exact solu-
tion.

Substituting this value of m into equation (BII), there is obtained

fAPP = 2.67Cf (BI4)
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Now, combining this with equation (BI3), there is obtained

4fApp = 7.15_Re x (BIS)

which may be rearranged to give

4f_p ReD= 7.15/[: (B_6)

It is interesting to note from equation (BI4) that_ in the laminar

entrance zone, the pressure drop due to the changing momentum flux is

1.67 times as large as the pressure drop due to skin friction.
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TABLE I

LOCATION OF PRESSURE TAPS

IN TEST SECTION

Tap

i

2

3
4

5
6

7
8

9
i0

ii

12

13
14

15
16

17
18

19
2O

21

Distance from

tube entrance,
in.

I

2

3
4

5
6

7
8

9
ii

13
16

19

23

27

31

35
41

47

53

59
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(a) Plot of all data showing mean experimental curve.

103
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SCHILLER ( FORcr--"O): _ •

_fAppReo=7.50 _ ]

Z
n,- __ MEAN E'XPERI MENTAL

a. CURVE;
a.

-- 4lApp(Re D) =6.87/

I02

10 .5 I0 -4

-- xID
o- --

Re D

I

,PRESENT THEORY:

4 fApp(Re D ) :7.1 5/v'_" _

I RUN D-2 v/ ]
a SHAPIRO AND SMITH(REE 18)

RESULTS OF TUBE ]]"

IWATERI TEST? l I I ,

_ I0 -3

(b) Comparison of mean experimental curve with b_st run (run D-2), with

dora of Shapiro and Smith (ref. 18)_ with the theory of Schiller

(ref. 25), and with present theory.

Fit_re 7.- Generalized correlation of local apparent friction factor in

laminar entrance zone for all adiabatic data.
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